Monday, January 26, 2026

¿Fabricación Aditiva o Sustractiva? Guía Completa para Elegir tu Proceso de Producción

 En el mundo de la manufactura moderna, prácticamente todos los objetos que nos rodean han sido creados mediante uno de estos dos pilares: fabricación aditiva o sustractiva. Como experto en ingeniería de productos, he visto a menudo cómo la elección correcta entre estas dos tecnologías no solo define la calidad de una pieza, sino que también determina la rentabilidad de todo un negocio.



En este artículo, desglosaremos las complejidades de ambos métodos. Al finalizar, tendrás una visión clara de cuál se adapta mejor a tus necesidades de prototipado rápido o producción en masa.


¿Cuál es la diferencia fundamental entre ambos procesos?

La diferencia reside en la lógica de construcción. Imagina que quieres crear una escultura:

  • Fabricación Aditiva (AM): Es como construir con bloques de LEGO. Empiezas desde cero y vas añadiendo material capa por capa (filamento, resina o polvo) hasta que la pieza está completa.
  • Fabricación Sustractiva (SM): Es como esculpir en mármol. Empiezas con un bloque sólido de material y vas eliminando el exceso mediante herramientas de corte, fresado o perforación hasta revelar la forma final.

Comparativa técnica directa

CaracterísticaFabricación AditivaFabricación Sustractiva
Desperdicio de materialMínimoAlto
Precisión y ToleranciaModerada a bajaMuy alta (Micras)
Velocidad (Gran volumen)LentaMuy rápida
Complejidad internaExcelente (conductos internos)Limitada por el acceso de la herramienta
Acabado superficialRugoso (requiere post-procesado)Excelente / Espejo

¿Por qué el desperdicio de material es un factor crítico?

Hoy en día, la sostenibilidad y el costo de la materia prima son vitales. En la fabricación aditiva, solo utilizas lo estrictamente necesario para la pieza y sus soportes. En cambio, en procesos sustractivos como el mecanizado CNC, es común que hasta el 60-70% del bloque original se convierta en viruta o residuo. Si trabajas con metales preciosos o materiales costosos, la técnica aditiva te ahorrará una fortuna en inventario.

¿Fabricación Aditiva o Sustractiva? Guía Completa para Elegir tu Proceso de Producción Yigu Prototipado Rápido 


Servicios de Fabricación de Metal a Medida

 Obtén cotizaciones instantáneas para tus prototipos y piezas de producción en lámina metálica. Fabricamos tus componentes y ensamblajes personalizados con entregas rápidas a partir de 5 días hábiles. Solo tienes que subir tu diseño para poner en marcha tu proyecto hoy mismo.



Fabricación de Chapa Metálica Personalizada

En Yigu, transformamos sus ideas en realidad con nuestros servicios de prototipado rápido y fabricación de chapa metálica. Ofrecemos una solución rentable y eficiente para sus proyectos, especializándonos en procesos de plegado, punzonado y corte de metal de calibre estándar.

Ya sea que necesite prototipos precisos o series de producción de bajo volumen, nuestro equipo garantiza piezas metálicas duraderas y listas para su uso final. Trabajamos con una amplia selección de materiales y acabados de alta calidad que se ajustan estrictamente a sus especificaciones técnicas.

Damos soporte a industrias de alta exigencia, tales como: Automotriz y Aeroespacial; Dispositivos médicos; Electrónica y energía; Robótica avanzada.


Materiales de chapa metálica

Disponemos de materiales de chapa metálica de alta calidad, como aluminio, acero inoxidable y latón, lo que garantiza una calidad constante y un rendimiento fiable en todas las piezas.


Servicios Personalizados de Impresión 3D Online

Obtenga soluciones de fabricación bajo demanda para el desarrollo de prototipos rápidos y producción final con acabados de alta calidad. Nuestro proceso optimizado le permite recibir sus piezas en un plazo de tan solo 3 días hábiles.



Nuestros Servicios de Impresión 3D

En Yigu, ofrecemos una gama completa de servicios de fabricación aditiva de alta calidad, adaptados a las necesidades de la industria moderna. Contamos con tecnologías avanzadas como FDM, SLA, SLS y SLM, lo que nos permite trabajar con una amplia variedad de plásticos y metales.

Ya sea que necesite validar un diseño mediante prototipado o escalar su producción de piezas finales, nuestras soluciones están diseñadas para ofrecer versatilidad y resistencia.

Tecnologías de Impresión 3D de Vanguardia

En Yigu, impulsamos la innovación mediante servicios de fabricación aditiva de precisión. Utilizamos tecnologías como FDM, SLA, SLS y SLM para procesar plásticos y metales con total exactitud. Nuestras soluciones son ideales para el prototipado rápido, la creación de componentes funcionales y la producción de bajo volumen, permitiendo fabricar estructuras complejas que los métodos tradicionales simplemente no pueden alcanzar.

Servicio de Impresión 3D Profesional: Prototipos y Series  

Servicios de mecanizado CNC a medida bajo demanda

Obtenga un servicio de mecanizado CNC en línea diseñado para la creación de prototipos rápidos y piezas de producción de alta calidad en metales o plásticos. Solicite sus cotizaciones instantáneas hoy mismo y consiga sus piezas personalizadas con los mejores estándares de precisión y a un precio competitivo.




Servicios de mecanizado CNC a medida para piezas de metal y plástico

Yigu es un fabricante con certificación ISO 9001:2015 que ofrece servicios de mecanizado CNC de alta calidad para piezas personalizadas. Nuestras capacidades internas incluyen fresado CNC de 3, 4 y 5 ejes, así como torneado, enrutado, mecanizado por descarga eléctrica (EDM), taladrado y rectificado de precisión. Gracias a estos procesos, garantizamos tolerancias rigurosas de hasta ±0,01 mm.

Desde el prototipado rápido hasta la producción a gran escala, nuestro taller de mecanizado está preparado para fabricar cualquier diseño a medida. Somos especialistas en mecanizado rápido, prototipos CNC y fabricación de alto y bajo volumen. Además, ofrecemos una amplia gama de acabados superficiales, como anodizado, recubrimiento en polvo y galvanoplastia, diseñados para mejorar tanto la durabilidad como la estética de sus piezas.

Ya sea que represente a una startup, una pyme o un fabricante de equipo original (OEM), Yigu es su socio de confianza para la subcontratación de servicios CNC. Envíe sus archivos CAD y planos técnicos ahora para recibir una cotización inmediata.

from Servicio de Mecanizado CNC: Piezas de Alta Precisión y Calidad

Sunday, November 30, 2025

Can 3D Printed Prototypes Use High Tenacity Resin? A Complete Guide

 If you’re working on 3D printed prototypes that need to withstand stress, bending, or repeated use, you might be asking if high tenacity resin is a good choice. The answer is a resounding yes! High tenacity resin has become a game – changer for creating durable, functional prototypes that can handle real – world conditions. Let’s explore why and how to use high tenacity resin for your 3D printing projects.

Why High Tenacity Resin Shines for 3D Printed Prototypes

High tenacity resin offers a unique set of benefits that make it stand out from other 3D printing materials, especially when durability is key.

  • Excellent bendability and tensile strength are its defining features. Unlike ordinary resins that break easily under stress, high tenacity resin can bend, stretch, and then return to its original shape. This makes it perfect for prototypes that need to withstand repeated disassembly, like snap – fit parts or hinges.
  • Smooth surface finish is another big advantage. While materials like nylon also offer good toughness, their surfaces are often rough and require extra post – processing. High tenacity resin, on the other hand, maintains a smooth surface while delivering toughness, saving you time on sanding and polishing.
  • Versatility for functional needs makes it a top pick. Whether your prototype needs to resist fatigue from repeated use, handle moderate forces, or even stand up to higher temperatures, high tenacity resin can meet these demands, making it ideal for functional testing.

Key Properties of High Tenacity Resin to Consider

Understanding the properties of high tenacity resin helps you decide if it’s the right fit for your prototype. Here are the most important ones:

  • Bending and tensile fatigue resistance is crucial for durability. High tenacity resin can endure repeated bending and stretching without breaking. Tests show that it can withstand hundreds of cycles of stress that would cause ordinary resin prototypes to crack or shatter.
  • Thermal performance expands its usability. Some high tenacity resins, like Rayshape’s Tough 20, have a good thermal deflection temperature. This means they can maintain their shape and toughness even when exposed to moderate heat, making them suitable for prototypes that might encounter temperature changes during use.
  • Low deformation rate ensures accuracy. High tenacity resin prototypes hold their shape well over time, even after being subjected to stress. This low deformation rate is essential for prototypes that need to maintain precise dimensions for fit – testing with other parts.

Choosing the Right High Tenacity Resin for Your Project

Not all high tenacity resins are the same, so picking the right one depends on your prototype’s specific needs. Here’s what to look for:

  • Printer compatibility is a must. High tenacity resins are typically used with SLA (Stereolithography) or LCD 3D printers. Some resins, like Synthetic – Tough and Fant – RY70, are specifically designed for LCD devices, offering excellent performance with these printers. Always check that the resin you choose works with your printer type.
  • Target application should guide your choice. If you’re making a prototype that needs to handle high temperatures, look for a resin with a high thermal deflection temperature. For parts that will be bent or snapped together frequently, prioritize tensile strength and fatigue resistance. Rayshape’s Tough 20 is a great all – rounder for high – performance functional prototypes and low – volume end parts.
  • Surface quality matters for aesthetics and functionality. High tenacity resins vary slightly in surface smoothness. If your prototype needs a sleek, professional look without much post – processing, choose a resin known for its smooth as – printed surface.

Saturday, November 29, 2025

What Determines Plastic Strength for 3D Printing, and Which to Choose

 When 3D printing functional parts—whether for prototypes, industrial components, or end-use products—plastic strength is the make-or-break factor for performance. A part that lacks sufficient strength may crack under load, fail in high temperatures, or wear out quickly. This article breaks down key high-strength 3D printing plastics, their strength metrics, and how to select the right one for your project.

1. Key Metrics: How to Measure Plastic Strength for 3D Printing?

Before comparing materials, it’s critical to understand the core metric used to evaluate strength: tensile strength. Measured in megapascals (MPa), it represents the maximum force a material can withstand before breaking when pulled.

Strength MetricDefinitionRelevance for 3D Printing
Tensile Strength (MPa)Force required to break a material under tensionDetermines if a part can handle pulling or stretching loads (e.g., brackets, hinges)
Impact ResistanceAbility to absorb energy without breaking (often tested via Izod/Charpy tests)Critical for parts that may experience shocks (e.g., tool handles, automotive components)
Heat Resistance (°C)Temperature at which strength drops by 50% (HDT, Heat Deflection Temperature)Essential for parts used in high-heat environments (e.g., engine components, 3D printer nozzles)

2. High-Strength Plastics for 3D Printing: Comparison Table

Below is a detailed breakdown of 5 common high-strength 3D printing plastics, including their tensile strength, key features, and ideal applications. This table helps you quickly match materials to your project’s strength needs.

Plastic TypeTensile Strength Range (MPa)Key FeaturesIdeal Applications
Polylactic Acid (PLA)40–60Good dimensional stability; low warping; easy to print; eco-friendly (biodegradable)Low-load prototypes (e.g., mechanical part models, electronic device shells)
Acrylonitrile-Butadiene-Styrene (ABS)30–50Balanced strength & toughness; good heat resistance (~90–110°C); impact-resistantMid-load parts (e.g., automotive interior components, tool handles, structural frames)
Polycarbonate (PC)60–70Exceptional impact resistance; high heat resistance (~130–140°C); transparentHigh-strength, high-heat parts (e.g., aerospace components, medical device housings, safety covers)
Nylon (PA)50–80 (varies by type)Excellent wear resistance; fatigue resistance (handles repeated loads); good flexibilityHigh-wear, repetitive-load parts (e.g., gears, bearings, sports equipment components)
Carbon Fiber-Reinforced Composites100–1,000+Extremely high strength & rigidity; lightweight (50% lighter than steel); heat-resistantUltra-high-strength, lightweight parts (e.g., aerospace structural parts, high-performance automotive components, racing gear)

What Is Prototype Making? A Comprehensive Guide to Bringing Designs to Life

 In the world of product development, turning a concept into a tangible reality requires a crucial step that bridges imagination and production: prototype making. Whether you’re an aspiring inventor, a product designer, or a manufacturing professional, understanding what prototype making entails is essential for creating successful products. This guide will walk you through everything you need to know about prototype making, from its definition and importance to its step-by-step process and key considerations.

Defining Prototype Making: From Concept to Tangible Model

At its core, prototype making is the process of transforming raw materials into functional or visual models based on design drawings, 3D models, or specific physical requirements. These prototypes serve as physical representations of a product idea, allowing designers, engineers, and stakeholders to visualize, test, and refine the concept before moving to mass production.

Unlike the final product, which is manufactured in large quantities, a prototype is typically a one-of-a-kind or small-batch model created to validate the feasibility and practicality of a design. It helps answer critical questions: Does the design work as intended? Is the structure stable? Does the appearance meet customer expectations? By addressing these questions early, prototype making saves time, money, and frustration in later stages of product development.

Prototype making isn’t limited to a single industry or product type. It’s used across various fields, including consumer electronics, automotive, medical devices, aerospace, and even furniture design. From a simple plastic casing for a new gadget to a complex mechanical component for an industrial machine, prototype making brings all kinds of designs to life.

The Importance of Prototype Making in Product Development

You might wonder why prototype making is such a vital step in product development. After all, with advanced computer simulations and 3D modeling software, can’t we just skip straight to production? The truth is, while digital tools are invaluable, nothing replaces the insights gained from holding a physical prototype in your hands.

First and foremost, prototype making allows for design validation. A 3D model on a screen might look perfect, but a physical prototype can reveal flaws that digital simulations miss—like unexpected weight distribution, poor ergonomics, or parts that don’t fit together properly. For example, a prototype of a new kitchen tool can help designers realize that the handle is uncomfortable to grip, a problem that might not be obvious in a digital model.

Second, prototypes facilitate functional testing. They let engineers and designers test how the product performs under real-world conditions. Will a new medical device withstand repeated sterilization? Does a new toy meet safety standards when dropped? These questions can only be answered by testing a physical prototype.

Third, prototype making enables stakeholder communication. Whether you’re presenting your idea to investors, clients, or team members, a physical prototype makes the concept tangible and easier to understand. It sparks more productive feedback and helps build confidence in the design.

Finally, prototype making helps reduce production risks. By identifying and fixing issues early, you avoid costly mistakes in mass production. Imagine investing in expensive molds for injection molding only to discover a design flaw—this could set your project back months and cost thousands of dollars. Prototype making helps you catch these issues upfront.